- proper ideal
- мат.собственный идеал
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Ideal (ring theory) — In ring theory, a branch of abstract algebra, an ideal is a special subset of a ring. The ideal concept allows the generalization in an appropriate way of some important properties of integers like even number or multiple of 3 . For instance, in… … Wikipedia
Ideal (order theory) — In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different… … Wikipedia
Ideal class group — In mathematics, the extent to which unique factorization fails in the ring of integers of an algebraic number field (or more generally any Dedekind domain) can be described by a certain group known as an ideal class group (or class group). If… … Wikipedia
Proper education — Another Brick in the Wall Another Brick in the Wall Chanson par Pink Floyd extrait de l’album The Wall Sortie 30 novembre 1979 … Wikipédia en Français
Boolean prime ideal theorem — In mathematics, a prime ideal theorem guarantees the existence of certain types of subsets in a given abstract algebra. A common example is the Boolean prime ideal theorem, which states that ideals in a Boolean algebra can be extended to prime… … Wikipedia
Maximal ideal — In mathematics, more specifically in ring theory, a maximal ideal is an ideal which is maximal (with respect to set inclusion) amongst all proper ideals.[1][2] In other words, I is a maximal ideal of a ring R if I is an ideal of R, I ≠ R, and… … Wikipedia
Prime ideal — In mathematics, a prime ideal is a subset of a ring which shares many important properties of a prime number in the ring of integers. This article only covers ideals of ring theory. Prime ideals in order theory are treated in the article on… … Wikipedia
Krull's principal ideal theorem — In commutative algebra, Krull s principal ideal theorem, named after Wolfgang Krull (1899 1971), gives a bound on the height of a principal ideal in a Noetherian ring. The theorem is sometimes referred to by its German name, Krulls Hauptidealsatz … Wikipedia
Principal ideal — In ring theory, a branch of abstract algebra, a principal ideal is an ideal I in a ring R that is generated by a single element a of R .More specifically: * a left principal ideal of R is a subset of R of the form R a := { r a : r in R }; * a… … Wikipedia
Dedekind domain — In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily … Wikipedia
Hilbert's Nullstellensatz — (German: theorem of zeros, or more literally, zero locus theorem – see Satz) is a theorem which establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry, an important branch of… … Wikipedia